

DEVELOPMENT OF HARMONIZED ENERGY DEMAND MODEL FOR ROAD TRANSPORTATION WITH GHG PREDICTION FOR THAILAND

Dr. Nuwong Chollacoop Dr. Peerawat Saisirirat Dr. Jakapong Pongthanaisawan Dr. Yossapong Laoonual

DEVELOPMENT OF HARMONIZED ENERGY DEMAND MODEL FOR ROAD TRANSPORTATION WITH GHG PREDICTION FOR THAILAND

902/1 9th Floor, Glas Haus Building, Soi Sukhumvit 25 (Daeng Prasert), Sukhumvit Road, Klongtoey-Nua, Wattana, Bangkok 10110, Thailand Tel. (66) 02-661-6248 FAX (66) 02-661-6249 http://www.atransociety.com

List of Members

• Project Leader • Dr. Nuwong Chollacoop

Renewable Energy Laboratory, National Metal and Materials Technology Center (MTEC), Thailand

Project Members •

Dr. Peerawat Saisirirat

Renewable Energy Laboratory, National Metal and Materials Technology Center (MTEC), Thailand

Dr. Jakapong Pongthanaisawan

National Science Technology and Innovation Policy (STI), Thailand

Asst.Prof.Dr. Yossapong Laoonual

Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thailand

• Advisors (if any) Assoc.Prof.Dr. Sorawit Narupiti

Department of Civil Engineering, Chulalongkorn University (CU), Thailand

Table of Contents

Page

List of Members	i
Table of Contents	ii
Lists of Figures	iv
List of Tables	vi
List of Abbreviations and Acronyms	vii
CHAPTER 1 INTRODUCTION	1
1.1 Rationale	1
1.2 Objectives	5
1.3 Methodology	5
CHAPTER 2 METHODOLOGY	10
2.1 LEAP System	10
2.2 Energy and environmental assessment	14
2.3 Case studies	16
CHAPTER 3 RESEARCH PLAN	17
3.1 Project Schedule	17
3.2 Project Expenditure	18
CHAPTER 4 ENERGY DEMAND MODEL SETUP	19
4.1 Database Framework	19
4.2 Vehicle Population Model	19
4.3 Vehicle Kilometer of Travel (VKT) Model	27
4.4 Fuel Economy (FE) Model	28
4.5 Validation of Energy Demand Model	31
CHAPTER 5 RESULTS & DISCUSSION FOR VARIOUS SCENARIOS	33
5.1 Scenarios Set Up and Business as Usual (BAU)	33
5.2 Gasohol scenario	38
5.3 Biodiesel scenario	40
5.4 Electric vehicle from EEDP and global green target	42

5.5 Comparison between energy policies and a probable case of combined scenario45	
CHAPTER 6 CONCLUSION	
References	

Lists of Figures

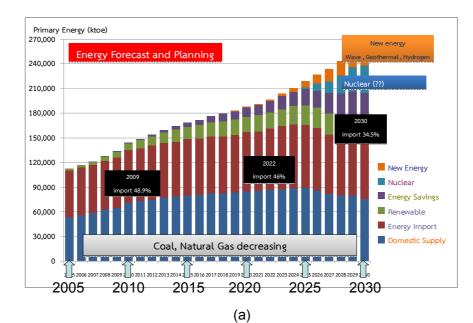
Fig. 1 (a) Thailand energy demand (with forecasting), (b) Thailand energy consumption by
economic sectors, (c) Thailand energy consumption in transport sector by mean and (d)
Thailand transport energy consumption by type
Fig. 2 (a) Thailand Alternative Energy Development Plan (AEDP) and (b) Thailand Energy
Efficiency Development Plan (EEDP)
Fig. 3 Flow of bottom-up energy demand model
Fig. 4 (a) "ASIF" Concept: Activity (A), Mode Share (S), Fuel Intensity (I) and Fuel Choice (F) with
its implication on (b) emission reduction7
Fig. 5 (a) Schematic concept of "Well-to-Tank", "Tank-to-Wheel" and "Well-to-Wheel" life cycle with
(b) detailed example on various transportation fuel
Fig. 6 LEAP calculation flows
Fig. 7 Overview of LEAP system showing (a) Analysis View, (b) Fuel data customization, (c)
Scenarios customization, (d) Result View and (e) Overview of interested results
Fig. 8 Example of GHGs emission calculation from (a) IPCC default value of TTW GHGs emission
from fossil fuel, (b) Thailand bioethanol (left) and biodiesel (right) schemes and (c) additional
electricity demand for EVs
Fig. 9 Vehicle population model (Bangkok) for (a) PC01, (b) PC02, (c) PC03, (d) PC04, (e) PC05,
(f) PC06, (g) BUS01, (h) BUS02, (i) BUS03, (j) Truck01 and (k) Truck02
Fig. 10 Vehicle population model (Provincial regions) for (a) PC01, (b) PC02, (c) PC03, (d) PC04,
(e) PC05, (f) PC06, (g) BUS01, (h) BUS02, (i) BUS03, (j) sBUS04 (k) Truck01 and (l) Truck02
Fig. 11 Validation of energy demand model with fuel consumption in year 2006-2012 for (a) all, (b)
gasoline and (c) diesel fuels; with (d) percentage by region
Fig. 12 Current number of EVs in Thailand: (a) BEVs and (b) HEVs
Fig. 13 BAU results for (a) gasoline and diesel segments showing blends of bioethanol and
biodiesel, and (b) EVs
Fig. 14 Fuel consumption and Well-to-wheel GHG emission in BAU case (a) by various vehicles (b)
by various secondary fuels
Fig. 15 Projections of new EV sale shares for eMC and PcEV in (a) 50%EEDP-IEA5y scenario and
(b) EEDP-IEA scenario
Fig. 16 Projections of on-road EV for eMC and PcEV in (a) 50%EEDP-IEA5y scenario and (b)
EEDP-IEA scenario
Fig. 17 Total ethanol consumption and gasoline suppression from various scenarios

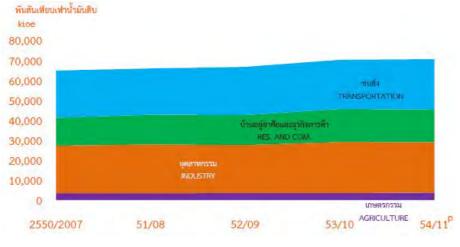
Fig.	18 Contributions of ethanol consumption from related vehicles in various scenarios	39
Fig.	19 Well-to-wheel GHG reduction by various gasohol scenarios (a) annual GHG reduction	@
	2021, (b) evolution of WTW Greenhouse Gas	40
Fig.	20 Projection of supplied palm oil for increasing of biodiesel consumption	41
Fig.	21 AEDP targets of diesel alternatives	41
Fig.	22 Biodiesel fraction to meet AEDP target in 2021 and diesel suppression	42
Fig.	23 Well-to-wheel GHG reduction for various biodiesel scenarios (compare to current B5). N	ote
	that BDF7.2 is a target of B10 ~ 7.2 ML/d BDF	42
Fig.	24 Additional electricity demand for charging EV	43
Fig.	25 Increasing of maximum daily peak load	44
Fig.	26 Fossil fuel reduction for various scenarios and by sector	44
Fig.	27 Reduction of well-to-wheel GHG emissions	45
Fig.	28 Energy demand reduction (compare to BAU scenario)	46
Fig.	29 Well-to-wheel GHG reduction	46
Fig.	30 Reduction of energy consumption for combined scenario and selected probable case	47
Fig.	31 Reduction of WTW GHG emission for combined scenario and selected probable case	48

List of Tables

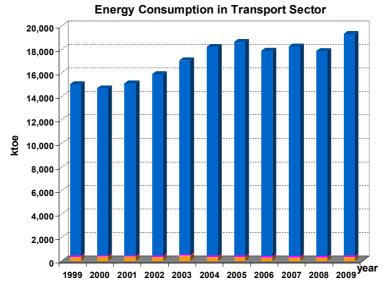
Page

Table 1: List of vehicles in Thailand by fuel type	3
Table 2: Differences between top-down and bottom-up approach in energy model	5
Table 3: Project planning schedule	17
Table 4: Project expenditure	18
Table 5: Vehicle re-classification in LEAP model from DLT data	19
Table 6: Vehicle population models for all vehicle types in Bangkok	20
Table 7: Vehicle population models for all vehicle types in Provincial regions	23
Table 8: Vehicle kilometer of travel (VKT) in year 2008 (used in the model)	27
Table 9: Modeling percent share for fuel used by each vehicle type in Bangkok	28
Table 10: Modeling percent share for fuel used by each vehicle type in provincial region	28
Table 11: Fuel economy for fuel used in each vehicle type for Bangkok region	29
Table 12: Fuel economy for fuel used in each vehicle type for Provincial region	29
Table 13: Fuel economy of Passenger Car Electric Vehicle (PcEV) in the gasoline-reference	e value
	30
Table 14: Fuel economy of Electric Motorcycle (eMC) in the gasoline-reference value	30
Table 15: BAU assumptions	33
Table 16: Scenarios assumptions	36
Table 17: Definition of the combined probable case	47


List of Abbreviations and Acronyms


ASIF	Activity (A), Mode Share (S), Fuel Intensity (I) and Fuel Choice (F)
BAU	Business-As-Usual
CI	compression-ignition
DEDE	Department of Alternative Energy Development and Efficiency, Ministry of
	Energy (Thailand)
EPPO	Energy Policy and Planning Office
FE	Fuel economy
GDP	Gross domestic product
GHG	Greenhouse gas
IPCC	Intergovernmental Panel on Climate Change
ktoe	Kilotonne of oil equivalent
LPD	Liter per day
LPG	Liquefied Petroleum Gas
MW	Megawatts
NEPC	National Energy Policy Council
NGV	Natural gas for vehicle
R&D	Research and development
SEI	Stockholm Environment Institute
SI	spark-ignition
ТНВ	Thai Baht
TRF	Thailand Research Fund
VKT	Vehicle Kilometer Traveled
yrs	Years

1.1 Rationale


As a net energy importer, Thailand has strived to secure energy supply for domestic demand. As shown in Fig. 1(a), Thailand Ministry of Energy has forecasted and planned the energy demand till 2030, based on currently available statistics on population and economic growths. To enhance national energy security, Thailand has two energy master plans. The first is 20-year Energy Efficiency Development Plan (EEDP: 2011-2030), which is labeled as "Energy Savings" in Fig. 1(a). On the other hand, the second is 10-year Alternative Energy Development Plan (AEDP: 2012-2021), which is labeled as "Renewable" in Fig. 1(a). From the past 5 years (2007-2011), Fig. 1(b) [1] shows that industry and transportation sectors are dominating with approximately 35-37% each. Hence, it is critical for policy makers to understand how energy demands from these two sectors behave with certain capability to be able to speculate and predict the trend in the future. In accordance with ATRANS interest, the present investigation will focus on road transportation sector, which dominates other sectors, as shown in Fig. 1(c).

Road transportation sector in Thailand is dominated by diesel and gasoline, which are used to transport people and goods for economic prosperity, as shown in Fig. 1(d). Table 1 shows breakdown of vehicles in Thailand (as of 31 March 2013) by fuel types ranging from gasoline (with and without ethanol blend), diesel (with biodiesel blend mandate), LPG, CNG to even electricity. [2]. Various policies have been initiated and implemented in order to reduce fossil consumption. With a bless from mother nature, Thailand has competitive advantage on biofuel, which has been included in Alternative Energy Development Plan (AEDP), as shown in Fig. 2(a). Two forms of biofuels, ethanol and biodiesel, have been commercially used throughout Thailand, not only to strengthen national energy security but also to reduce GHG (greenhouse gas) emission. Furthermore, higher efficiency vehicle, such as many types of electric vehicles (EVs), is included as one of the measure for transportation sector within Energy Efficiency Development Plan (EEDP), as shown in Fig. 2(b).

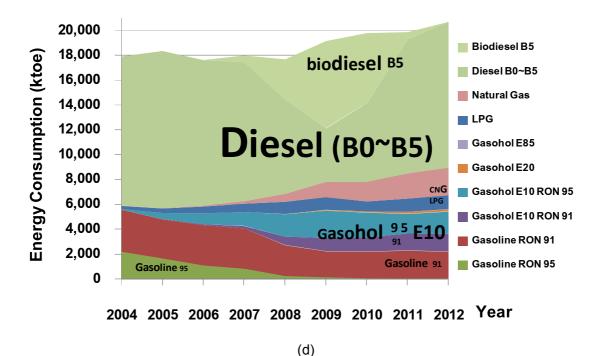


Fig. 1 (a) Thailand energy demand (with forecasting), (b) Thailand energy consumption by economic sectors, (c) Thailand energy consumption in transport sector by mean and (d)

Thailand transport energy consumption by type

Туре	Total	Gasoline	Diesel	All LPG	All CNG	Hybrid	Electric	Non fuel	Other
Passenger Cars	6,575,208	3,705,852	1,804,518	851,579	154,525	43,676	21	-	15,037
Pick-up Truck	5,527,731	203,503	5,125,407	128,236	49,218	2	6	-	21,359
Motorcycle	19,291,407	19,286,984	-	-	-	72	4,351	-	-
Public Motorcycle	120,149	120,149	-	-	-	-	-	-	-
Tuk Tuk	22,205	3,934	71	16,487	1,676	-	3	-	34
Taxi	117,810	4,368	1,145	40,478	71,729	75	2	-	13
Truck	912,370	678	710,047	1,852	38,102	1	17	151,101	10,572
Bus	139,265	5,606	101,763	4,463	27,220	26	32	-	155
Tractor & Farm Vehicle	447,604	-	447,604	-	-	-	-	-	-
Other	13,790	-	10,955	-	-	-	-	2,835	-
All	33,167,625	23,331,104	8,201,542	1,043,099	342,490	43,826	4,426	153,968	47,170

Table 1: List of vehicles in 1	Thailand by fuel type
--------------------------------	-----------------------

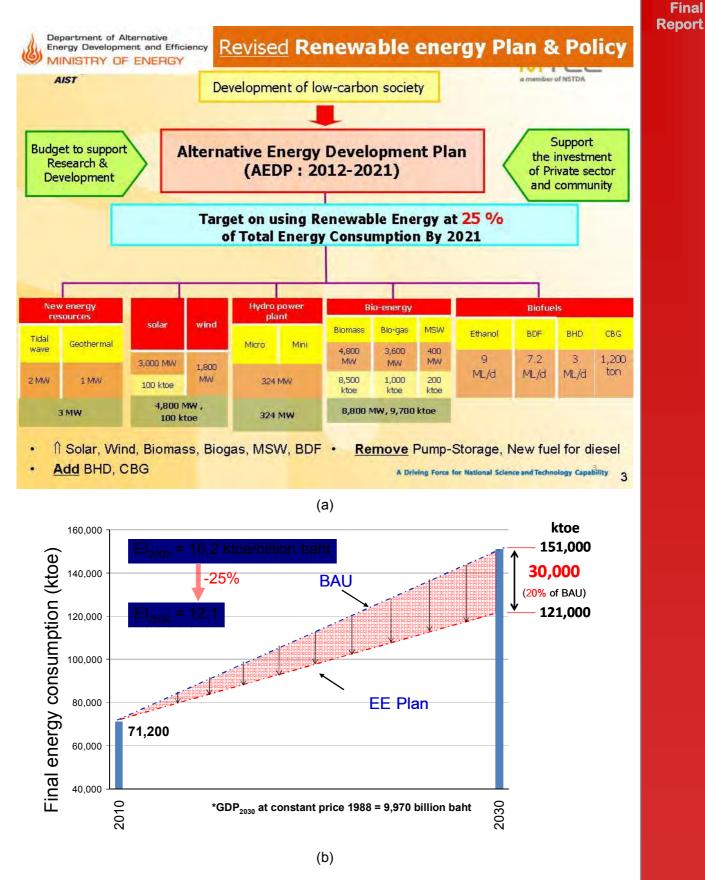
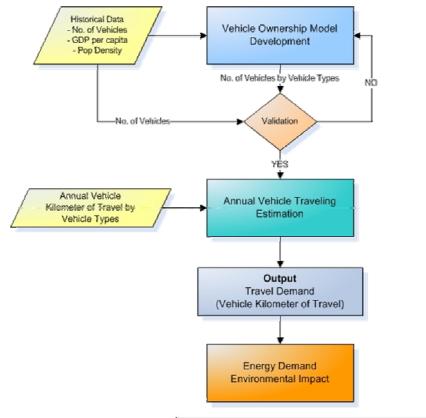


Fig. 2 (a) Thailand Alternative Energy Development Plan (AEDP) and (b) Thailand Energy Efficiency Development Plan (EEDP)

1.2 Objectives

To be able to understand the energy demand behavior with capability to predict future demand with potential benefit from GHG reduction by a use of renewable biofuel and/or higher efficiency electric vehicle, energy demand modeling is needed. A bottom-up engineering approach, e.g. LEAP (Long-range Energy Alternatives Planning) model [3], has been proved suitable for this kind of problem worldwide. However, only a few groups of Thai researchers [4, 5], including previous ATRANS project [6], have been actively investigating different aspects. Hence, the objectives of the proposed investigation are


- 1. To review and compare various energy demand modeling in Thailand with LEAP program.
- 2. To construct a harmonized version that best fit the current situation with most versatile capability.
- 3. To analyze and forecast energy demand with GHG benefit from biofuel.

1.3 Methodology

In order to analyze energy use pattern in transportation sector with capability to predict energy demand with resulting emission, bottom-up approach, rather than top-down approach, is undertaken due to its capability in accounting for the flow of energy based on simple engineering relationship, as detailed in Table 2 [7]. Inputs of traveling demand, fuel consumption and vehicle numbers from various types into the bottom-up model can yield the estimation of energy demand, as schematically shown in Fig. 3 [3]. Among many others, Long-range Energy Alternatives Planning (LEAP) system [3] will be utilized to construct the energy demand model in this study.

Top-down	Bottom-up
Use aggregated economic data	Use detailed data on fuels, technologies and policies
Assess costs/benefits through impact on output, income, GDP	Assess costs/benefits of individual technologies and policies
Implicitly capture administrative, implementation and other costs.	Can explicitly include administration and program costs
Assume efficient markets, and no "efficiency gap"	Do not assume efficient markets, overcoming market barriers can offer cost-effective energy savings
Capture intersectoral feedbacks and interactions	Capture interactions among projects and policies
Commonly used to assess impact of carbon taxes and fiscal policies	Commonly used to assess costs and benefits of projects and programs
Not well suited for examining technology- specific policies.	

Table 2: Differences between top-down and bottom-up approach in energy model

				Energy demand module			
Sector	Sub-sector	End-use	Device	Ene	rgy intensity		Energy demand
Transport sector	Transport mode	Modal split	Vehicle kilometer of travel	Type of fuel used	Fuel economy of vehicle	\Box	Scenario analysis
(vehicle)	(per cent)	(per cent)	(kilometer)	(per cent)	(GJ per veh-km)		(GJ or ktoe)

Fig. 3 Flow of bottom-up energy demand model

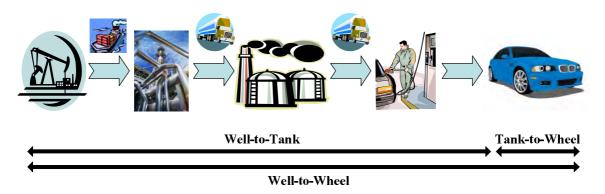
From previous study [8], relevant energy transport database framework from vehicles, traffic, energy usage and socio-economic data has been laid out. Important factors for energy demand in transportation have been identified following "ASIF" principles, namely Activity (A), Mode Share (S), Fuel Intensity (I) and Fuel Choice (F) [9, 10, 11], as shown in Fig. 4(a). This ASIF concept can be applied for emission reduction in transportation sector as shown in Fig. 4(b), which include both renewable biofuel and higher efficiency electric vehicle.

A:Transport Activity	 Travel demands of passenger and freight 	A:Avoid	Avoid or reduce transport activity
S:Modal Structure	•% Share of activity by transport mode	S:Shift	 Shift to more efficiency and/or low-carbon modes
l:Energy Intensity	• Energy consumption per transport activity	l:Improve	 Improve energy efficiency of transport mode or vehicle technology
F:Fuel Choice	• Number of carbon emitted per a unit of fuel consumed	F:Switch Fuel	• Switch fuel to a low- or non- carbon fuel

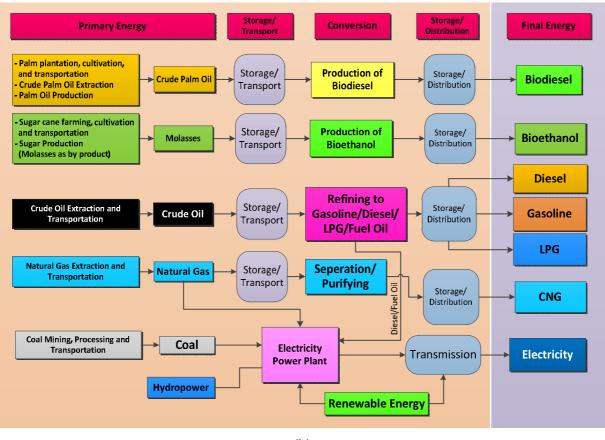
(a)

Dollar Crowns	Time Frames of	Time Frames of Measures and Technology				
Policy Groups	Short-term Oil Use Reduction	Mid-term Oil and CO ₂ Reductions	Long-term Reductions			
Vehicle Travel Reduction (Avoid/Shift)	 Vehicle Driving Restriction Pricing Policies Implementation of Odd/Even Driving Bans Encouraging Telecommuting or Working at Home Encouraging Compressed Work Schedules Urban Public Transport Promotion 	 Improving the Transport Sy Promotion of High Efficie Transport Switch Freight Movemen Transport 	ency Road Public			
Reducing Vehicle Fuel Use and CO2 Emissions (Improve)	Improving Energy Efficiency of the On- road Vehicles • Optimal Vehicle Speed Limit • Increasing Carpool • Optimal Tire Pressures • Proper Maintenance Program • Intelligent Transport Systems	New Vehicle Fuel Economy Improvement • Direct Injection Systems • Diesel Common Rail Systems • Increased Use of Light Weight Material • Better Aerodynamics • Hybrid Electric Propulsion Systems	Advanced Vehicles and Fuels Technologies • Hydrogen • Electricity • Biofuels • Natural Gas • Fuel Cells			
Alternative Fuel Promotion (Fuel Switching)	Increased Use of Alternative Fuels Biofuels Natural Gas Electricity 					

(b)


Fig. 4 (a) "ASIF" Concept: Activity (A), Mode Share (S), Fuel Intensity (I) and Fuel Choice (F) with its implication on (b) emission reduction

A bottom-up engineering energy demand model is composed of main variables such


as

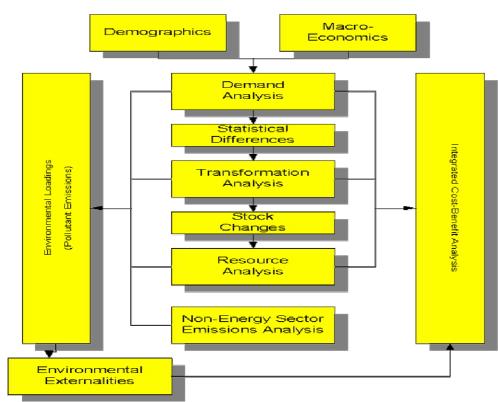
- 1. number of vehicles
- 2. fuel economy, and
- 3. vehicle kilometer of travel (VKT),

Various LEAP models in Thailand will be compared and discussed based on these three factors to arrive at harmonized database. Issues, such as functional forms of vehicle ownership models, fuel economy variation and trend, fuel sharing and difficulty to obtain VKT, will be addressed with some sensitivity studies. Once the harmonized version is developed, it will be benchmarked against historic data of energy consumption. For GHG module, Well-To-Wheel analysis of both fossil, biofuel and electricity generation will be reviewed with emphasis on gathering secondary data on biofuel (both ethanol and biodiesel), as well as national inventory data on electricity generation, as shown in Fig. 5 [4]. With careful calibration on both energy consumption and GHG emission, the final model with database will be utilized to investigate various effects from both EEDP and AEDP. Finally, complete model and database will be available for academically sharing among researchers and policy makers under ATRANS policy.

⁽a)

⁽b)

Fig. 5 (a) Schematic concept of "Well-to-Tank", "Tank-to-Wheel" and "Well-to-Wheel" life cycle with (b) detailed example on various transportation fuel

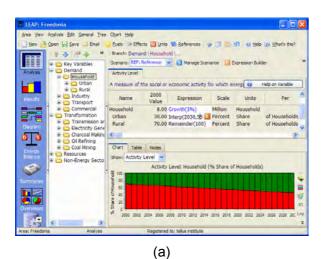

CHAPTER 2 METHODOLOGY

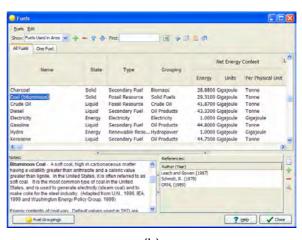
2.1 LEAP System

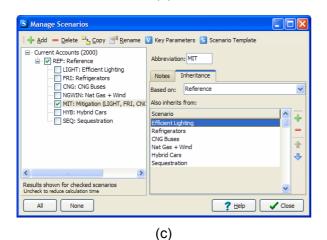
The choice of bottom-up energy model approach in the present study is Long-range Energy Alternatives Planning (LEAP) system, developed by Stockholm Environment Institute (SEI) and freely available for non-profit organization [3]. LEAP modeling capabilities are highlighted as follows, with the calculation flows shown in Fig. 6.

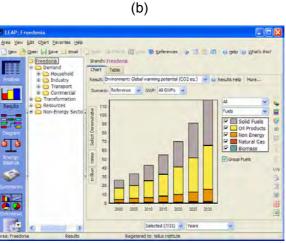
- Energy Demand
 - > Hierarchical accounting of energy demand (activity levels x energy intensities).
 - > Choice of methodologies.
 - > Optional modeling of stock turnover.
- Energy Conversion
 - Simulation of any energy conversion sector (electric generation, transmission and distribution, CHP, oil refining, charcoal making, coal mining, oil extraction, ethanol production, etc.)
 - > Electric system dispatch based on electric load-duration curves.
 - > Exogenous and endogenous modeling of capacity expansion.
- Energy Resources:
 - > Tracks requirements, production, sufficiency, imports and exports.
 - > Optional land-area based accounting for biomass and renewable resources.
- Costs:
 - All system costs: capital, O&M, fuel, costs of saving energy, environmental externalities.
- Environment
 - > All emissions and direct impacts of energy system.
 - > Non-energy sector sources and sinks.

LEAP Calculation Flows




Fig. 6 LEAP calculation flows


In brief, LEAP system mainly deals with energy demand, energy conversion/transformation and energy resource, with optional analyses on cost and environment. The model is based on accounting of energy flow with spreadsheet functionality, with the selected appearance shown in Fig. 7.


- The *Analysis View* allows user to create data structures, enter data, and construct models and scenarios in all demand, transformation and resource, as shown in Fig. 7(a)-(c).
- The *Results View* allows user to examine the outcomes of input scenarios as charts and tables shown in Fig. 7(d).
- The Diagram View allows user to track the flows of energy.
- The *Energy Balance View* allows user to output standard table showing energy production/consumption in a particular year.
- The Summary View allows user to output cost-benefit comparisons of scenarios and other customized tabular reports.
- The *Overviews* allows user to group together multiple "favorite" charts for presentation purposes, Fig. 7(e).
- The *TED View* allows user to access Technology and Environmental Database complied with technology characteristics, costs, and environmental impacts of approximately 1000 energy technologies.

• The Notes View allows user to document and reference own data and models.

(d)

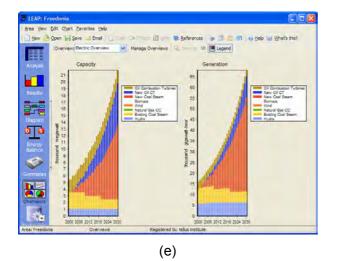


Fig. 7 Overview of LEAP system showing (a) Analysis View, (b) Fuel data customization, (c) Scenarios customization, (d) Result View and (e) Overview of interested results

As mentioned earlier, important assumptions or variables for energy demand model

are

- 1. estimate the number of vehicles (NV),
- 2. estimate the distances traveled by each vehicle (VKT),
- 3. estimate the fuel economy of each vehicle (FE)

First, the number of vehicles can be estimated by realizing the past data and trend of vehicle growth in a mathematical model, often called "Vehicle Ownership Model", which can be modeled as the S-Curve logistic function of GDP per capita and population density. Of course, various previous works [4, 5, 6] may have specific functional forms, which would be combined for best accuracy for up-to-date data. An example of such function is [12]

$$\ln(\frac{S - VO}{VO}) = a + b \ln GDPpCap + c \ln PopDen$$

where	VO	= Vehicle occupancy (number of vehicle/1,000 population)
	S	= Saturation level of VO (number of vehicle/1,000 population)
	GDPpCap	= GDP per capita (THB/person)
	PopDen	= Population density (person/sq. km)
	a, b and c	= coefficients from curve fitting with historical data

Second, the Vehicle Kilometer Traveled (or VKT) of each vehicle type will govern how much fuel or energy is consumed for each vehicle type within a unit distance. Unfortunately, Thailand does have this database regularly updated so previous works [4, 6] have relied on project-based survey [13, 14]

Last, the fuel economy of each vehicle type (or FE), together with VKT, will directly give total fuel or energy needed. Similarly, this variable is not regularly updated so certain assumptions must be made from the engineering aspects, such as type of engine (spark-ignition vs compression-ignition), engine age, fuel ratio used (liquid with biofuel blended or gas)

Hence, total energy demand can be estimated via the following simple relation.

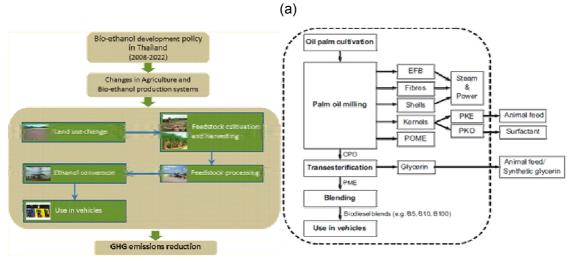
$$ED_{ij} = NV_{ij} \times VKT_j \times FE_{ij}$$

where *ED*_{ij} = energy demand of fuel type "i" from vehicle type "j" (liter)

NV_{ij} = number of registered vehicle type "j" that uses fuel type "i" (number of vehicle) VKT_{ii} = average distances traveled by vehicle type "j" (km)

 FE_{ii} = fuel economy of registered vehicle type "j" that uses fuel type "i" (liter/km)

Lastly, total energy or fuel demand predicted from the model will be calibrated with the statistical data of various fuel sold in order to improve the accuracy. Once the model is calibrated, it can be used to answer the "What if" questions of interest, such as effect of biofuel and electric vehicle.


2.2 Energy and environmental assessment

As previously mentioned, the direct output from LEAP model is the total energy demand calculated from the number of vehicle at various vehicular fuel economy over distanced traveled. The energy and environment impact will be assessed on the reduction of fossil fuel demand and reduction of GHGs emission from various degrees of national policy implementation, AEDP for biofuel and EEDP for EVs.

As for reduction of fossil fuel, it is calculated based on the assumption of biofuel introduction in the case of AEDP and EVs introduction in the case of EEDP, based on the same economic activities in terms of vehicle growth, VKT and FE projection. As for reduction of GHGs emission, the whole WTW (well-to-wheel) value is calculated from WTT (well-to-tank) and TTW (tank-to-wheel) components. For fossil fuel (gasoline and diesel), the WTT component can be obtained based on Thai refinery database or standard estimate from TTW values [1, 15, 16]; whereas, the TTW component can be obtained from IPCC default value [17], as shown in Fig. 8(a). On the other hand, WTW GHGs emission from biofuel (bioethanol and biodiesel) is strongly dependent on the WTT component; thus, the WTW GHGs emission factor used will be referenced from the prior analyses conducted in the case of bioethanol and biodiesel production in Thailand [18, 19, 20], as shown in Fig. 8(b). For GHGs emission reduction from EVs introduction, it is a bit more complicated as the net reduction will be the difference of WTW GHGs emission from fossil fuel reduction and WTW GHGs emission from additional electricity generation for EVs. The WTW GHGs emission from additional electricity generation will use emission factor of Thailand electricity energy mix from National Power Development Plan [21], as shown in Fig. 8(c). Hence, each scenario will be analyzed for GHGs emission reduction based on various assumption of biofuel (AEDP) and EVs (EEDP) introduction.

UNCERT	AINTY RANGES a	Section and	-
Fuel Type	Default (kg/TJ)	Lower	Upper
Motor Gasoline	69 300	67 500	73 000
Gas/ Diesel Oil	74 100	72 600	74 800
Liquefied Petroleum Gases	63 100	61 600	65 600
Kerosene	71 900	70 800	73 700
Lubricants ^b	73 300	71 900	75 200
Compressed Natural Gas	56 100	54 300	58 300
Liquefied Natural Gas	56 100	54 300	58 300

^b See Box 3.2.4 Lubricants in Mobile Combustion for guidance for uses of lubricants.

(b)

		PDP20	010: Revision 2	PDP20	10: Revision 3
	Year	Annual Amounts	Accumulative Amounts (Base Year: 2012)	Annual Amounts	Accumulative Amounts (Base Year: 2012
SUMMARY	2012	0.488	0.488	0.478	0.478
OF	2013	0.481	0.485	0.471	0.474
HAILAND POWER DEVELOPMENT PLAN	2014	0.467	0.479	0.468	0.472
2012 - 2030 (PDP2010: REVISION 3)	2015	0.447	0.470	0.448	0.466
	2016	0.422	0.460	0.430	0.458
	2017	0.412	0.451	0.429	0.452
	2018	0.401	0.443	0.413	0.446
	2019	0.401	0.437	0.416	0.442
Anna	2020	0.405	0.433	0.412	0.438
MINISTRY OF ENERGY	2021	0.410	0.430	0.407	0.434
	2022	0.404	0.427	0.410	0.432
	2023	0.400	0.424	0.413	0.430

Fig. 8 Example of GHGs emission calculation from (a) IPCC default value of TTW GHGs emission from fossil fuel, (b) Thailand bioethanol (left) and biodiesel (right) schemes and (c) additional electricity demand for EVs

2.3 Case studies

As previously mentioned, the present study focuses on the policy impact from both AEDP (biofuel) and EEDP (EVs) in transportation sector. Underlying assumption are the fixed economic growth (that would reflect the vehicle growth), and the fixed population growth throughout the period of study. The Business-As-Usual reference case assumes there is no additional measure or policy to push. For the scenarios analyses in case studies of interest, three cases pursued are defined as follows, which could be adjusted later on.

- 1. AEDP target for biofuel
 - Assume biofuel target of 9 ML/d ethanol and 5.97 ML/d biodiesel is achieved in year 2021
 - > Assume 50% of biofuel target is achieved
 - > Evaluate effects on fossil fuel reduction, biofuel consumption and GHG emission
- 2. EEDP target for EVs
 - Assume electric motorcycles (eMCs) target of 75% of new motorcycle is achieved in 2030
 - > Assume electric light duty vehicles (eLDVs) target from IEA roadmap
 - > Assume a combination of both eMCs and eLDVs target with some variations
 - Evaluate effects on fossil fuel reduction, electricity consumption and GHG emission
- 3. Combined AEDP and EEDP targets for both biofuel and EVs, respectively
 - > Assume a combination of both AEDP and EEDP targets with some variation
 - Evaluate effects on fossil fuel reduction, biofuel/electricity consumption and GHG emission

Note that specific assumption for each scenario will be discussed among experts in the field to obtain most probable and realistic definitions.

3.1 Project Schedule

Table 3 shows the project planning schedule. All project members are scheduled to meet once a month to discuss the technical results performed by project research assistant, and directions of the project. Occasionally, the progress report will be presented to the advisors to further seek guidelines and comments of the results and future direction.

	2012						2013					
Activity	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Review current LEAP												
models for pro & con in												
details												
Compare and discuss												
various assumptions and database to												
and database to achieve harmonized												
version with versatile												
scope												
Model calibration with												
historical energy												
consumption												
Review Well-to-Wheel												
analysis of fossil and												
biofuel in Thailand												
Analyze for most												
suitable emission factor												
for use in LEAP												
program												
Model calibration with												
historical GHG												
emission Utilize final model to												
investigate various												
aspects of EEDP and												
AEDP												
Inception report	30-Apr											
submission												
Progress report			24-Jun									
presentation												
Interim report						04-Sep						
presentation												
Interim report						30-Sep						
submission												
Roundtable												
discussion/workshop												
Final report										10/12/14		
presentation										Dec		
Final report submission												31-Mar

Tahla	2 .	Pro	ioct	nlanning	schedule
I able	з.	FIU	eci	planning	Schedule

3.2 Project Expenditure

Table 4 shows the breakdown of the project expenditure.

			Number	
No.	Item	Unit cost	of units	Sub total
1	Project leader	3,000	12	36,000
2	Advisors participation in project meeting (1,000 THB/day x 2 persons x 4 days)	1,000	8	8,000
3	Members participation in monthly project meeting (1,000 THB/day x 4 persons x 12 days)	1,000	48	48,000
4	Research assistant (full time for 12 months, with master degree)	18,000	12	216,000
5	Misc. expenses for monthly project meeting	3,000	12	36,000
6	Interview expenses with related researchers for secondary data analysis	3,000	6	18,000
7	Project meetings	3,000	12	36,000
8	Office & computer supply	3,500	12	42,000
9	Secretariat's participation portion	10,000	1	10,000
10	Publishing proportion of the report book	50,000	1	50,000
				500,000

Table 4: Project expenditure

CHAPTER 4 ENERGY DEMAND MODEL SETUP

This section will follow similar methodology from previous ATRANS 2009-10 project [6] with update from additional database recently available and other works [4, 5]. Detailed methodology should be referred to [6].

4.1 Database Framework

From Section 2.1, the energy demand function can be modeled as follows.

 $ED_{ij} = NV_{ij} \times VKT_j \times FE_{ij}$ (i is fuel type, j is vehicle type)

- where *ED*_{ij} = energy demand of fuel type "i" from vehicle type "j" [liter/year]
- *NV*_{ij} = number of registered vehicle type "j" that uses fuel type "i" [number of vehicle]

*VKT*_{ij} = average distances traveled by vehicle type "j" [km/year]

*FE*_{ij} = fuel economy of registered vehicle type "j" that uses fuel type "i" [liter/km]

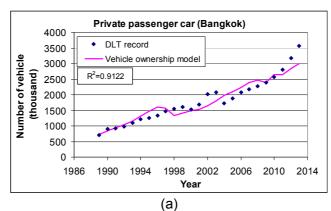
In other words, the energy demand in the transportation sector can be determined by integrating the results over every fuel type "i" and vehicle type "j". However, some assumptions are necessary to construct each component. Firstly, the functional form of number of registered vehicle (NV) is updated from previous works [6] with additional recent historical record from Transport Statistics Sub-Division, Department of Land Transport (DLT) and consideration from [4]. Secondly, Vehicle Kilometer of Travel (VKT) still needs to adapt those in [6] as there is no additional update data since 2010. Thirdly, Fuel Economy (FE) will mostly follow [6] with minor update especially on the FE of EVs. Finally, the predicted energy demand will be calibrated with additional data since [6] for improved accuracy.

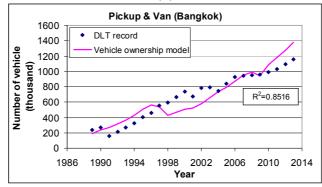
4.2 Vehicle Population Model

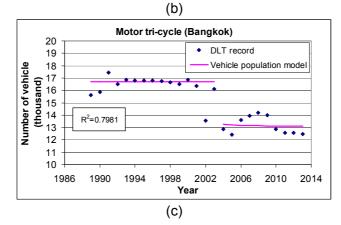
Following [6], the vehicle types are still re-categorized from DLT classification for the purpose of LEAP calculation, as shown in the Table 5. Please note that the agriculture vehicle, utility vehicle and automobile trailer are not considered in this work because they consume small fraction of energy.

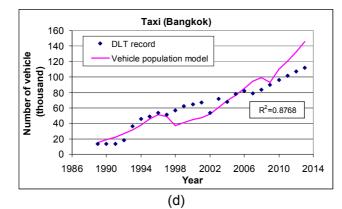
A. Total vehicle under Motor Vehic	cle Act	B. Total vehicle under Land Tra	nsport Act
MV. 1 Not more than 7 passengers	PC01	Bus	
MV. 2 Microbus & Passenger van	passenger car	- Fixed Route Bus	Bus01
MV. 3 Van & Pickup	PC02 pickup	- Non Fixed Route Bus	Bus02

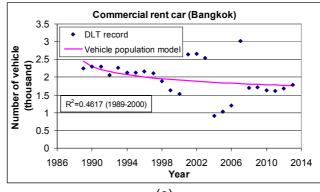
Table 5: Vehicle re-classification in LEAP model from DLT data

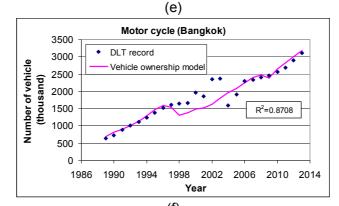

MV. 4 Motor tri-cycle	Door	- Private Bus	Bus03
MV. 7 Fixed Route Taxi (Subaru)	PC03 motor tri-cycle	Small Rural Bus	sBus04
MV. 8 Motor tri-cycle Taxi (Tuk Tuk)		Truck	·
MV. 6 Urban Taxi	PC04 taxi	- Non Fixed Route Truck	Truck01
MV. 5 Interprovincial Taxi		- Private Truck	Truck02
MV. 9 Hotel Taxi	PC05		
MV. 10 Tour Taxi	Commercial rent car		
MV. 11 Car for Hire			
MV. 12 Motorcycle	PC06 Motor		
MV. 17 Public Motorcycle	cycle		
MV. 13 Tractor			
MV. 14 Road Roller			
MV. 15 Farm Vehicle	-		
MV. 16 Automobile Trailer			

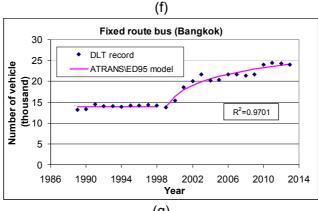

From [6], specific functional form for each vehicle type is still retained with consideration of [4] but fitted with more data update from DLT. The models for Bangkok vehicle are shown in the Table 6, followed by the plot of their predicted results against historic record for each vehicle type in Fig. 9. On the other hand, the vehicle models for Provincial region are shown in Table 7, followed by the plot of their predicted results against historic record for each vehicle type in Fig. 10. It is shown that the predicted results are well-fitted with their historic record except for the vehicle population of the "Motor tri-cycle" (PC03) of provincial region, as shown in Fig. 10(c). This unusual behavior is difficult to be modeled with any independent parameter. With economic crisis in Thailand during 1997-1998, those data sets may be omitted from regression to better enhance the R^2 value.

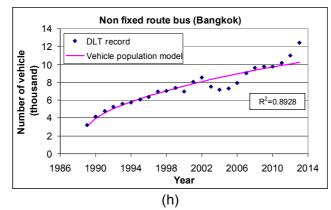

	N_vehicle Bangkok (GDPpCap)	R ²
PC01 private passenger car	$ln\left(\frac{VO}{0.812 - VO}\right) = 1.4843 ln GDPpCap - 19.4997$	0.9122
PC02 pickup	$ln\left(\frac{VO}{0.5 - VO}\right) = 2.0434 ln GDPpCap - 26.1439$	0.8295
PC03 motor tri-cycle	$NV = 16,686.9 yr \le 2003 NV = -62.8521 ln (yr - \tau) + 13,239.2345 ; \tau = 2003 yr \ge 2004$	0.7981 (2004-2013)
PC04 taxi	InVO = 2.3484 In GDPpCap - 32.5572	0.8768
PC05 commercial rent car	$NV = -215.3791 ln(yr - \tau) + 2453.9905; ; \tau = 1988$	0.4617 (1989-2000)
PC06 motor cycle	$ln\left(\frac{VO}{0.6 - VO}\right) = 1.5579 ln GDPpCap - 19.9935$	0.8074

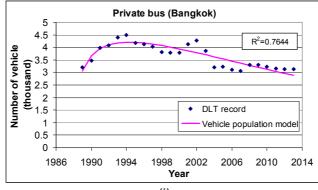

Table 6: Vehicle population models for all vehicle types in Bangkok

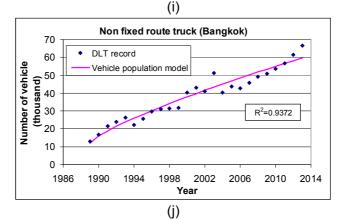

Bus01 fixed route bus	$NV = 13970 \qquad yr \le 1998$ $NV = 3780.5450 \ln(yr - \tau) + 13839.6365 ; \tau = 1998$ $yr \ge 1999$	0.9701
Bus02 non fixed route bus	$NV = (1 - 0.5146 \cdot e^{-0.0341^{*}(yr - \tau)}) \cdot (2162.9755 \ln(yr - \tau) + 6149.6650)$ $\tau = 1988$	0.8928
Bus03 private bus	$NV = (0.5146 \cdot e^{-0.0341^{*}(yr-\tau)}) \cdot (2162.9755 \ln(yr-\tau) + 6149.6650)$ $\tau = 1988$	0.7644
sBus04 small rural bus	-	-
Truck01 non fixed route truck	$NV = (1 - 0.8019 \cdot e^{-0.0179^{*}(yr - \tau)}) \cdot (20500.6162 \ln(yr - \tau) + 56359.1341)$ $\tau = 1988$	0.9372
Truck02 private truck	$NV = (0.8019 \cdot e^{-0.0179^{*}(yr-\tau)}) \cdot (20500.6162 \ln(yr-\tau) + 56359.1341)$ $\tau = 1988$	0.5169

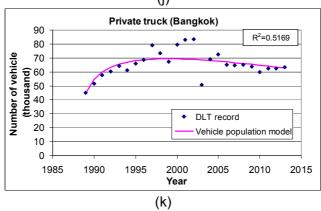
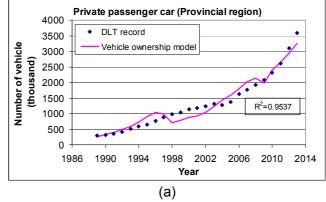


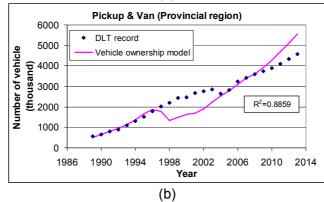


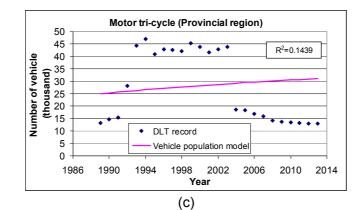


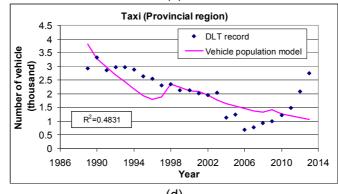


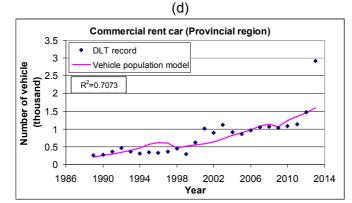


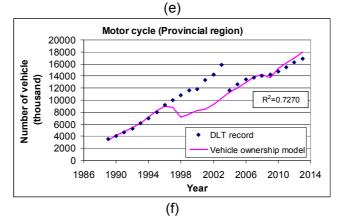



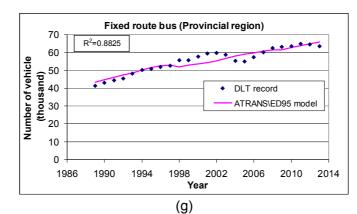

Fig. 9 Vehicle population model (Bangkok) for (a) PC01, (b) PC02, (c) PC03, (d) PC04, (e) PC05, (f) PC06, (g) BUS01, (h) BUS02, (i) BUS03, (j) Truck01 and (k) Truck02

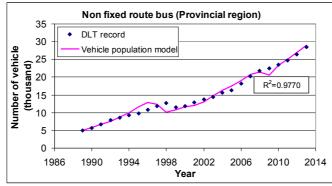

Table 7: Vehicle population models for all vehicle types in Provincial regions

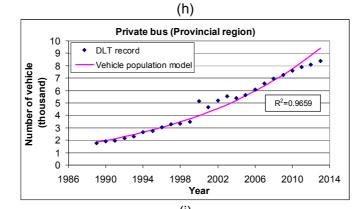

N_vehicle Provincial (GDPpCap)	R^2

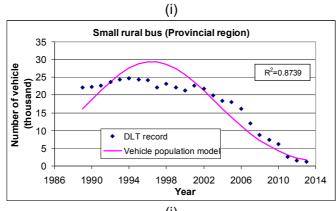

PC01 private passenger car	$ln\left(\frac{VO}{0.812 - VO}\right) = 2.7376 ln GDPpCap - 33.5569$	0.9537
PC02	$ln\left(\frac{VO}{0.5 - VO}\right) = 2.5503 ln GDPpCap - 30.3984$	0.8859
PC03 motor tri-cycle	VO = 0.0004537	0.1439
PC04 taxi	ln(VO) = -1.6975 ln GDPpCap + 8.0152	0.4831
PC05 commercial rent car	ln(VO) = 2.0946 ln GDPpCap - 34.2175	0.7073
PC06 motor cycle	$ln\left(\frac{VO}{0.6 - VO}\right) = 2.1849 ln GDPpCap - 24.8218$	0.7270
Bus01 fixed route bus	ln(VO) = 0.2305 ln GDPpCap - 9.5408	0.8825
Bus02 non fixed route bus	ln(VO) = 1.7795 ln GDPpCap - 27.7744	0.9770
Bus03 private bus	$ln(VO) = 0.0589(yr - \tau) - 10.3657$ \tau = 1988	0.9659
sBus04 small rural bus	$ln(VO) = -0.0104 (yr - \tau)^{2} + 0.1671 (yr - \tau) - 8.2912$ $\tau = 1988$	0.8739
Truck01 non fixed route truck	$ln(VO) = 0.0812(yr - \tau) - 8.1633$ $\tau = 1988$	0.9935
Truck02 private truck	$ln(VO) = 0.3038 ln(yr - \tau) - 5.6547$ \tau = 1988	0.9684

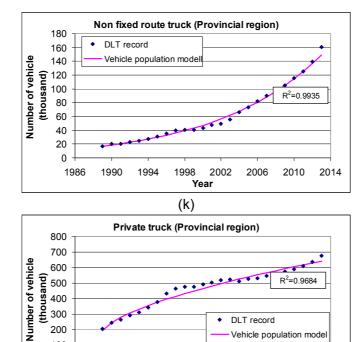












(j)

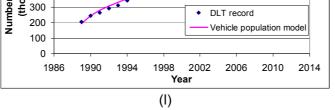


Fig. 10 Vehicle population model (Provincial regions) for (a) PC01, (b) PC02, (c) PC03, (d) PC04, (e) PC05, (f) PC06, (g) BUS01, (h) BUS02, (i) BUS03, (j) sBUS04 (k) Truck01 and (l) Truck02

4.3 Vehicle Kilometer of Travel (VKT) Model

Without repeating VKT model development in [6], the complete VKT values for each vehicle type in both Bangkok and Provincial regions are shown in the Table 8. In brief, if the survey data in 2008 [14] is available, it is directly reported in Table 8. On the other hand, if the survey data in 2008 [14] is not available, the survey data in 1997 [13] is extrapolated and reported in Table 8.

	Bangkok	Provincial region
PC01 Passenger car	9,887*	11,264*
PC02 Pickup	15,008*	13,746*
PC03 Motor tri-cycle	6,500*	7,475*
PC04 Taxi	37,651**	48,347**
PC05 Commercial rent car	12,626**	15,531**
PC06 Motor cycle	8,097*	7,414*
Bus01 Fixed route bus	47,787**	38,993**
Bus02 Non fixed route bus	49,127**	48,692**
Bus03 Private bus	29,476**	33,422**

Table 8: Vehicle kilometer of travel (VKT) in year 2008 (used in the model)

sBus04 Small rural bus	-	33,831**
Truck01 Non fixed route truck	28,450**	51,920**
Truck02 Private truck	27,430**	44,138**

* Reference from the VKT data in year 2008 [14]

** Calculated in this work from VKT data in 1997 [13]

4.4 Fuel Economy (FE) Model

Without repeating FE model development in [6], the percent shares of fuel use for each vehicle type are shown in Table 9 and Table 10 for Bangkok and provincial region, respectively; whereas, the fuel economy is shown in Table 11 and Table 12 for Bangkok and provincial region, respectively.

Bangkok	Liquid fueled engine				Li	Liquid/gas fueled engine			Dedicated gas	
Model		SI Engine*		Diesel*	Bi-fuel	Bi-fuel	DDF	DDF	LPG	CNG
Woder	Gasoline**	E10**	E20**	Diesei	SI LPG*	SI CNG*	LPG*	CNG*	dedic.*	dedic.*
PC01		78.16%		20.38%	1.46%	0.00%	0.00%	0.00%	0.00%	0.00%
1 001	42.86%	56.57%	0.57%	20.3070	1.40 /0	0.00 %	0.00 /0	0.00 /6		0.00 /0
PC02		5.25%		94.75%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
1 002	67.95%	32.05%	0.00%	54.7570	0.0070	0.0070	0.00 /0	0.00 /0	0.0070	0.0070
PC03		42.46%		0.00%	17.84%	0.00%	0.00%	0.00%	37.48%	2.22%
1 000	79.58%	20.42%	0.00%	0.0070	17.0470	0.0070	0.0070	0.00 /0	57.4070	2.22 /0
PC04		14.01%		0.00%	77.00%	7.62%	0.00%	0.00%	1.37%	0.00%
1 004	42.86%	56.57%	0.57%	0.0070	11.0070	7.0270	0.0070	0.00 /0	1.07 /0	0.0070
PC05		69.73%		26.92%	3.35%	0.00%	0.00%	0.00%	0.00%	0.00%
	42.86%	56.57%	0.57%	20:02 /0	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070
PC06		100.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
1 000	65.57%	34.43%	0.00%	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	5.00 /0
Bus07		1.24%		94.77%	2.39%	0.00%	0.00%	0.00%	0.00%	1.60%
Bacol	100.00%	0.00%	0.00%	01.1170	2.0070	0.0070	0.0070	0.00 /0	0.00 %	1.00 /0
Bus08		0.39%		99.61%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Bussee	100.00%	0.00%	0.00%	00.0170	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070
Bus09		0.80%		99.20%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Bussee	100.00%	0.00%	0.00%	00.2070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070
sBus04										
020001										
Truck10		0.00%		99.30%	0.00%	0.00%	0.22%	0.48%	0.00%	0.00%
THUCKTO	100.00%	0.00%	0.00%	00.00 /0	0.0070	0.0070	0.2270	0.4070	0.0070	0.0070
Truck11		0.39%	•	99.61%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
HOORT	100.00%	0.00%	0.00%	00.0170	0.0070	0.00%		0.00%	0.0070	0.0070

 Table 9: Modeling percent share for fuel used by each vehicle type in Bangkok

* Registered record from DLT [2]

** EPPO report 2008 [14]

Table 10: Modeling percent share for fuel used by each vehicle type in provincial region

Province	Liquid fueled engine				Liquid/gas fuel engine				Dedicated gas	
Model	S	I Engine*		Diesel*	Bi-fuel	Bi-fuel	DDF	DDF	LPG	CNG
woder	Gasoline**	E10**	E20**	Diesei	SI LPG*	SI CNG*	LPG*	CNG*	dedic.*	dedic.*
PC01		68.83%		20.210/	0.969/	0.00%	0.000/	0.000/	0.00%	0.00%
PCUI	49.83%	50.17%	0.00%	30.31% 0.86%	0.00%	0.00%	0.00%	0.00%	0.00%	
DC00		7.17%		00.00%	0.000/	0.000/	0.001	0.000/	0.000/	0.00%
PC02	67.95%	32.05%	0.00%	92.83% 0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
DC02		47.60%		0.00%	0.00%	0.000/	.00% 0.00%	0.000/	FO 400/	0.000/
PC03	79.58%	20.42%	0.00%	0.00%		0.00%		0.00%	52.40%	0.00%
DC04	68.61%		40.40%	40.000/	0.000/	0.000/	0.000/	0.00%	0.000/	
PC04	49.83%	50.17%	0.00%	19.13%	12.26%	0.00%	0.00%	0.00%	0.00%	0.00%
PC05		84.01%		10.18%	5.81%	0.00%	0.00%	0.00%	0.00%	0.00%

	49.83%	50.17%	0.00%							
DCOG		100.00%		0.00%	0.000/	0.000/	0.000/	0.00%	0.00%	0.000/
PC06	74.56%	25.44%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Bus07		3.71%		96.29%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%
Dusor	100.00%	0.00%	0.00%	30.2370	0.00 /0	0.00 /0	0.00 /0	0.0070	0.00 /0	0.0170
Bus08		24.15 %		75.85%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Dusoo	100.00%	0.00%	0.00%	75.65%		0.0070	0.0070			
Bus09		0.00%		100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Dusoa	100.00%	0.00%	0.00%	100.00 %	0.00 /0	0.00 /0	0.0070 0.0070	0.0070	0.00 /0	0.0070
oDuo04		13.32%		96 699/	0.000/	0.00/	0.00% 0.00%	0.00% 0.00%	0.00%	0.000/
sBus04	100.00%	0.00%	0.00%	86.68%	0.00%	0.00%			0.00%	0.00%
Truck10		0.00%		100.000/	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
THUCK TU	100.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Truck11 -		0.00%		100.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%
	100.00%	0.00%	0.00%	100.0070	0.00%	0.00%			0.00%	0.00 /0

*Registered record from DLT [2]

**EPPO report 2008 [14]

Table 11: Fuel economy for fuel used in each vehicle type for Bangkok region

lung (litera and		Single fu	Dedicative gas engine			
km/litre and km/kg for CNG	Spa	ark ignition eng	line	Diesel	LPG	CNG
, , , , , , , , , , , , , , , , , , ,	Gasoline	E10	E20	engine		0110
PC01	10.62*	11.30*	9.85**	11.44*	9.87*	10.85*
PC02	10.00*	9.64**	9.28**	11.21*	11.57*	11.33*
PC03	10.92**	10.52**	10.13**	12.00**	9.71*	9.29*
PC04	10.58**	10.20**	9.82**	11.63**	9.83**	10.81**
PC05	11.83**	11.40**	10.97**	13.00**	10.99**	12.08**
PC06	32.77*	29.24*	-	-	-	-
Bus01	2.18**	2.10**	2.03**	2.40*	2.03**	1.86*
Bus02	2.09**	2.01**	1.94**	2.30**	1.94**	2.13**
Bus03	2.09**	2.02**	1.95**	2.31**	1.95**	2.14**
sBus04	-	-	-	-	-	-
Truck01	2.57**	2.48**	2.38**	2.83*	2.39**	2.63**
Truck02	2.22**	2.14**	2.06**	2.44**	2.07**	2.27**

*Referred from EPPO report [14]

**Calculated from previous EPPO report [13]

Table 12: Fuel economy	/ for fuel used in each vehic	e type for Provincial region

lue (litre end		Single fu	Dedicative gas engine			
km/litre and km/kg for CNG	Spa	ark ignition eng	ine	Diesel	LPG	CNG
-	Gasoline	E10	E20	engine	2. 0	0.10
PC01	12.28*	12.43*	11.40**	11.96*	11.03*	10.04*
PC02	11.88*	12.07*	11.02**	12.04*	11.00*	12.42*
PC03	16.16*	15.57*	15.00**	16.06**	12.18*	9.29**
PC04	12.09**	11.66**	11.22**	12.02**	11.03**	11.26**
PC05	10.82**	10.43**	10.04**	10.75**	9.87**	10.08**

PC06	25.75*	25.92*	-	-	-	-
Bus01	4.18**	4.03**	3.88**	4.15*	3.81**	3.12*
Bus02	4.37**	4.21**	4.06**	4.34**	3.99**	4.07**
Bus03	4.35**	4.19**	4.04**	4.32**	3.97**	4.05**
sBus04	4.71**	4.54**	4.37**	4.68**	4.29**	4.38**
Truck01	4.05**	3.90**	3.76**	4.02*	3.69**	2.01*
Truck02	4.68**	4.51**	4.34**	4.65**	4.27**	4.36**

*Referred from EPPO report [14]

**Calculated from previous EPPO report [13]

However, the data of fuel economy for electric vehicles were not available in Thailand. In this work, only the commercialized electric vehicles, e.g. electric passenger car (PcEV) and electric motorcycle (eMC) are considered. As the previous work [22], the fuel economy of eMC is referred from the results of a eMC demonstration project, done in King Mongkut's Institute of Technology Ladkrabang (KMITL) [23]; while the US-EPA report entitled 'Fuel Economy Guide' [24] was referred for the PcEV. The fuel economy of both eMC and PcEV was considered as gasoline-referred value. The eMC is battery electric arrangement (dedicated electrification) but the PcEV is composed of 4 electrification-internal combustion engine hybrids. The PcEV can be separated to four categorizes, e.g., Hybrid Electric Vehicle (HEV, generally an electric-conventional engine hybrid), Plug-in Hybrid Electric Vehicle (PHEV, a HEV which can be charge with external electric source), Battery Electric Vehicle (BEV). Fuel economies of PcEV and eMC are shown in Table 13 and Table 14, respectively.

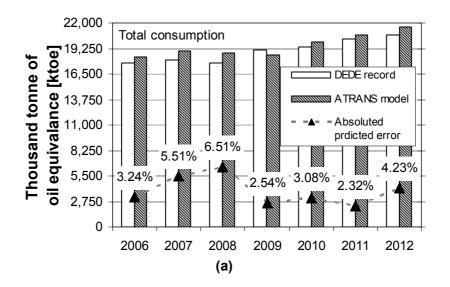
Table 13: Fuel economy of Passenger Car Electric Vehicle (PcEV) in the gasoline-reference
value

Light duty vehicle	SI-fuel economy relative improvement	Esti	FE unit	
	(%)	Bangkok	Outside Bangkok	
HEV	29.74	15.11	17.48	km/liter
PHEV	52.27	22.25	25.73	km/literGE**
BEV	71.51	37.27	43.11	km/literGE
		(23.68)	(20.47)	(kW-hr/100 km)
Gasoline	-	10.62	12.28	km/liter

*Calculate by referring to fuel economy of private passenger car in Thailand

**LiterGE is the energy unit in a same quantity of 1 liter of gasoline

Motorcycle	SI-fuel economy relative	Es	FE unit	
	improvement (%)	Bangkok	Outside Bangkok	
Electric MC	86.34	239.86	188.48	km/literGE**
		(3.70)	(4.68)	(kW-hr/100 km)
Motorcycle	-	32.77	25.75	km/liter


*Calculate by comparing to fuel economy of motorcycle in Thailand

**LiterGE is the energy unit in a same quantity of 1 liter of gasoline

While the conventional vehicle requires fossil fuel or bio-fuel for the internal combustion engine; the EV (in the cases of PHEV, BEV and eMC) requires electricity, which is stored in the battery and transformed to mechanical power via the electric motor. In the view point of electric supplier, the use of EV will increase annual electric consumption (in the unit of GW-hr) and top-up the daily load demand (in the unit of MW). The GW-hr can be calculated from the energy demand model as fuel economy shown in Table 13 and Table 14 but the effect of EV on the daily load demand depends on how many EV are instantaneously plugged-in to the grid and which charging standard is used for EV charging (how fast the EV is charged). In this study, the worst case charging scenario, referred from [25], was considered. EV is assumed to be uncontrollably plugged into the electric grid as the 'Charge wherever they park' profile, which increases additional demand between the peak period of 7.30pm and 9.30pm. The impacts of PcEV (PHEV and BEV) and eMC are accounted for 164.43 and 44.41 kW/100 vehicles, respectively.

4.5 Validation of Energy Demand Model

Following [6], energy demand model can be constructed from all factors mentioned above, and then calibrated with actual energy consumption in transportation sector, as shown in Fig. 11.

DEDE record ATRANS model Absoluted 14.26%13.69% prdicted error 8.65% % 24 2.23% 2008 2009 2010 2011 2012 (b) DEDE record ATRANS model Absoluted prdicted error 9.28% 8.00% 6.83% 2.72% 10.94% 2008 2009 2010 2011 2012

5

2.47%

2007

-

6,000

5,000

4,000

3,000

2,000

1,000

15,000

12,000

9,000

6,000

3,000

0

oil equivalance [ktoe] Thousand tonne of

0

oil equivalance [ktoe]

Thousand tonne of

Gasoline

1.05%

2006

Diesel

2.78%

2006

0.69%

2007

Ì

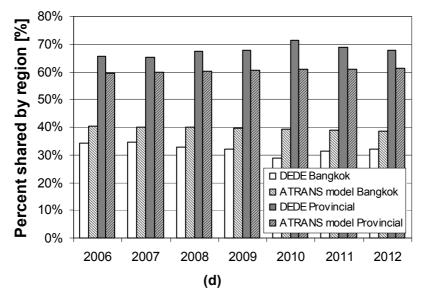
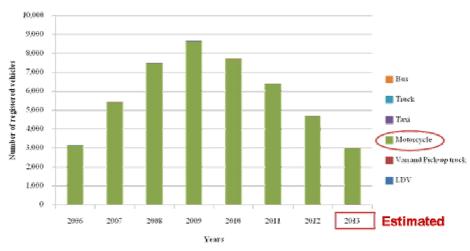


Fig. 11 Validation of energy demand model with fuel consumption in year 2006-2012 for (a) all, (b) gasoline and (c) diesel fuels; with (d) percentage by region

32


CHAPTER 5 RESULTS & DISCUSSION FOR VARIOUS SCENARIOS

5.1 Scenarios Set Up and Business as Usual (BAU)

As previously discussed, energy demand model can be used to evaluate the longterm impact of specific policy implementation via scenario analyses. In the present study, biofuel from AEDP (including ethanol and biodiesel) and electric vehicle technology from EEDP policy will be focused with the following details. First, BAU assumptions are shown in Table 15 and Fig. 12. Then, the results of BAU scenario are shown in Fig. 13 for fuel/electricity consumption and Fig. 14 for GHG emission. Fig. 13 shows the results until the AEDP target year (2021); whereas, Fig. 14 shows the results until the calculation end (2030).

BAU					
Bio	fuel	Electric vehicle (see Fig. 12)			
Gasoline segment	Diesel segment	Electric motorcycle	Electric light duty		
		(eMC)	vehicle (e-LDV)		
-For light duty	-Current diesel fuel is	-Currently (2011)	-Currently (2011)		
vehicle (PC01) :	diesel B5 (diesel fuel	small fraction of	only hybrid electric		
Gasoline and	+ 5% of FAME	electric (battery)	vehicle (HEV) in the		
Gasohol_E10 will be	biodiesel), which will	motorcycle (eMC) of	light duty vehicle		
changed to	be increased to 7% in	0.04% (6,431 unit	segment of 0.2%		
Gasohol_E20 within	2014	from ~18 million	(20,878 unit from ~10		
5 years between		motorcycle) → will	million LDV		
2010 to 2015		keep this ratio	consisting of ~4.9		
-For motorcycle		constant	million passenger		
(PC06) : Gasoline will			car and ~5.1 million		
be changed to			pickup truck) \rightarrow will		
Gasohol_E10 within			keep this ratio		
5 years between			constant		
2010 to 2015			-Plug-in hybrid		
			electric vehicle		
			(PHEV) and Battery		
			electric vehicle (BEV)		
			are not yet sold in		
			Thailand's at LDV		
			market.		

Table 15: BAU assumptions

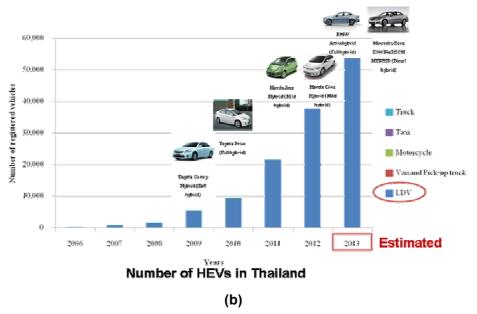


Fig. 12 Current number of EVs in Thailand: (a) BEVs and (b) HEVs

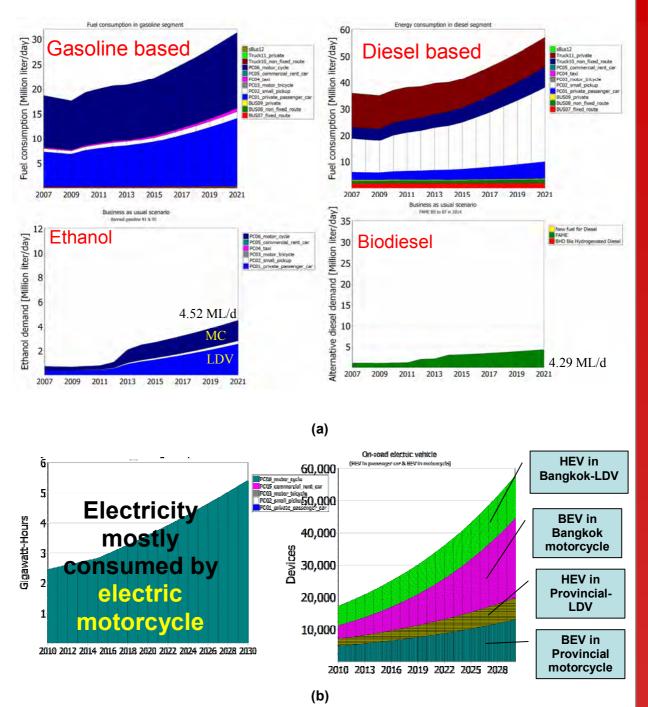


Fig. 13 BAU results for (a) gasoline and diesel segments showing blends of bioethanol and biodiesel, and (b) EVs

Final Repo<u>rt</u>

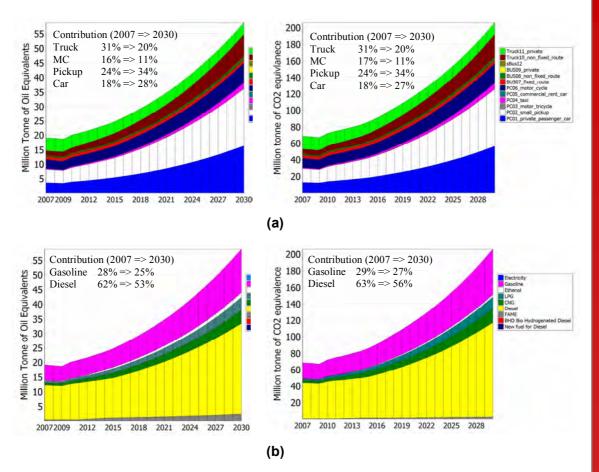


Fig. 14 Fuel consumption and Well-to-wheel GHG emission in BAU case (a) by various vehicles (b) by various secondary fuels

With current trends of transport energy policy and technology status, the scenario of biofuel from AEDP and EV for EEDP can be classified into 3 scenarios, namely bioethanol, biodiesel and EV, as shown in Table 16. The results for each scenario are discussed in the following sections. The trends of EV technology penetration are shown in Fig. 15 and Fig. 16 for new and on-road vehicles, respectively.

Mode	el 🛛	Biofuel			EV			
		Gasoline Diesel			Diesel	eMC	e-LDV	
BAU		See Table 15						
		LDV MC			MC			
		New	On-road	New	On-road			
0	BAU	E20	E0 → E10	E10	No change			
Ethanol	E20-LDV	E20	All → E20	E10	All → E10			
Щ	E20extreme	E20	All → E20	E20	All → E20			
	(LDV&MC)							
	E85-new LDV	E85	E0 → E20	E10	No change			

								Re
			2014, B10					
			from FAME					
sel			2017, B10 +					
Diesel			BHD 3 ML/d					
			2015-2020,					
			apply NFD					
	BAU	See Table 15						
	50%EEDP-			From	2015,	From	201	5,
	IEA5y			meet	half	follow	IEA <mark>E</mark>	v
				EEDP	target	roadma	ıp w <mark>it</mark>	h
s				(35%) i	n 2030	5 years	s del <mark>a</mark>	y
EVs						till 2030)	
	EEDP-IEA			From	2015,	From	201	5,
				meet	EEDP	follow	IEA <mark>E</mark>	v
				target	(70%)	roadma	ıp <mark>ti</mark>	11
				in 2030)	2030		

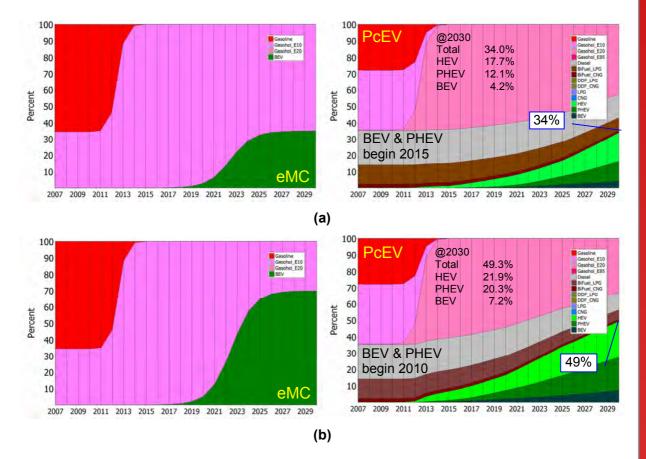


Fig. 15 Projections of new EV sale shares for eMC and PcEV in (a) 50%EEDP-IEA5y scenario and (b) EEDP-IEA scenario

37

Final

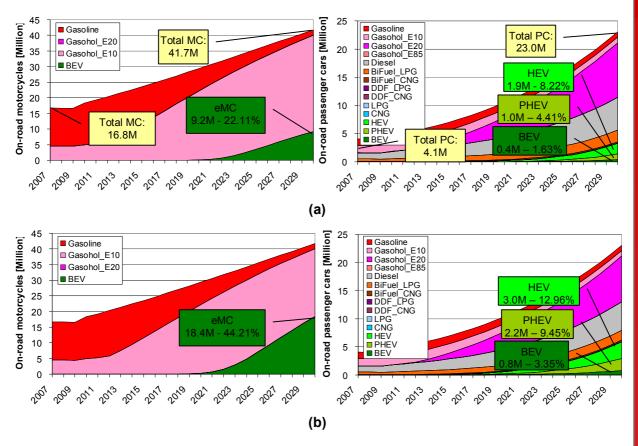
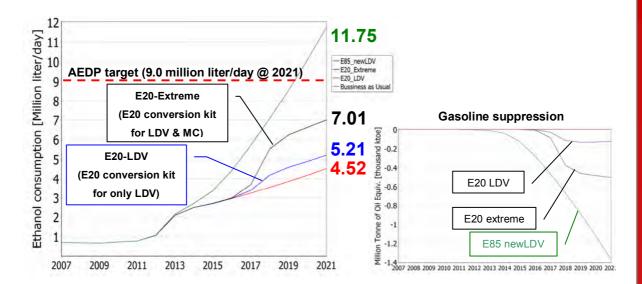
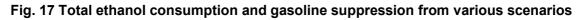




Fig. 16 Projections of on-road EV for eMC and PcEV in (a) 50%EEDP-IEA5y scenario and (b) EEDP-IEA scenario

5.2 Gasohol scenario

By blending ethanol with gasoline, the gasohol can be used in different blending fraction, depends on the acceptable level from the engine. There are three retailed gasohol fuels commercially available in Thailand, e.g. gasohol E10, E20 and E85. At present, the new spark ignition vehicle in Thailand is gasohol E20 acceptable. There are some portions of vintage passenger cars and motorcycles, which are not compatible with gasohol fuel, still present among on-road vehicles because Thai vehicle has long survival age. Hence, the gasohol conversion kit is necessary for this vehicle group. Even though the E85 conversion kit could be used, the E85 retailed station is still not widespread throughout Thailand. Therefore, conversion kit is considered only for the gasohol E20 in this work; by two implement levels for LDV and for both LDV and motorcycle. The new E85 is only considered for some portion in the new car segment. The results of ethanol scenarios are shown from Fig. 17 to Fig. 19.

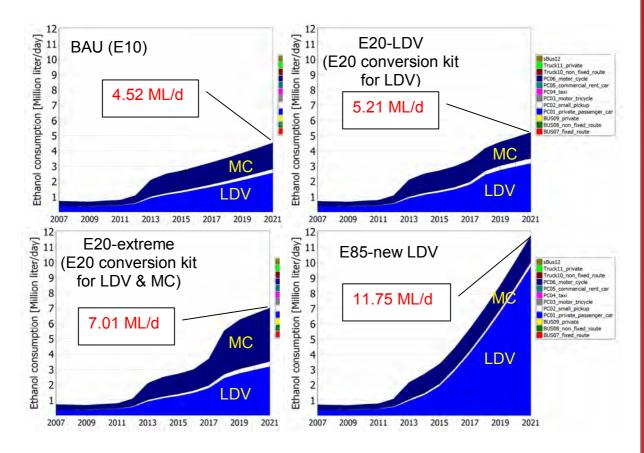
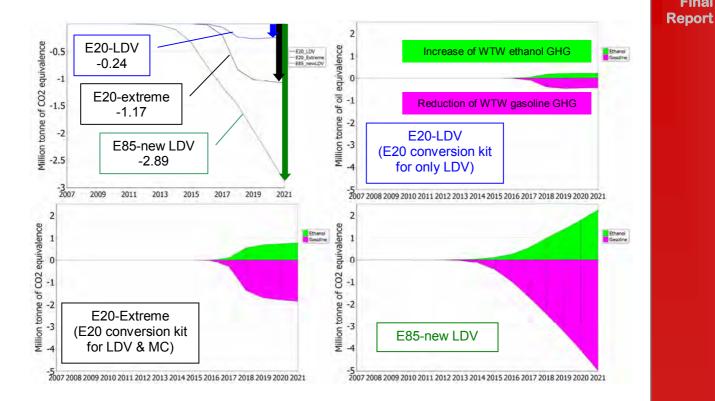
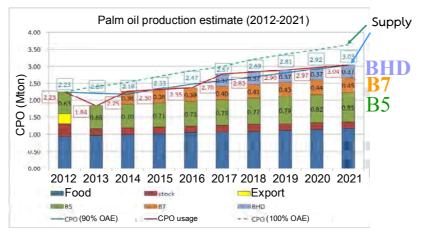


Fig. 18 Contributions of ethanol consumption from related vehicles in various scenarios




Fig. 19 Well-to-wheel GHG reduction by various gasohol scenarios (a) annual GHG reduction @ 2021, (b) evolution of WTW Greenhouse Gas

Consider the AEDP target of 9ML/d ethanol, the results show that E85-new LDV case will consume more ethanol than the target in 2021. E20-LDV and E20-extreme will consume less ethanol in 2021 but the consumption will grow due to vehicle population growth rate. It is found that ethanol consumption for these two E20 cases will achieve 9 ML/d in 2026 (E20extreme) and 2030 (E20-LDV), respectively. In addition, the results of WTW-GHG emission show gasohol can help decrease road transport GHG emission because of lower WTT Greenhouse Gas production.

5.3 Biodiesel scenario

Similar to gasoline demand, which is suppressed by ethanol blended in gasohol fuels, the consumption of diesel fuel is reduced with increasing blending fraction of diesel alternatives, e.g. fatty acid methyl ester (FAME), bio-hydrotreated diesel (BHD), and biofuelto-liquid (BTL). In addition, the new fuel for diesel (NFD), which is targeted in AEDP, is specified as another choice for alternative diesel fuel in the future. Compared to the definition of BAU in Table 15, biodiesel scenario is categorized into 3 different cases. First, the B10 or 10% biodiesel is targeted at 2021. Second, ~2% of BHD or 3 ML/d is added from 2017. Third, the target of NFD to suppress 30 million liter/day of fossil diesel fuel was considered. The projection of supplied palm oil for increasing biodiesel consumption is shown in Fig. 20. The results of biodiesel scenario are shown from Fig. 21 to Fig. 23.

Final

Final

Source: Palm productivity from OAE (Office of Agricultural Economics), 7 Feb 2013 Diesel consumption increases from 54.4 ML/d in 2012 to 71.5 ML/d in 2021 (EPPO)

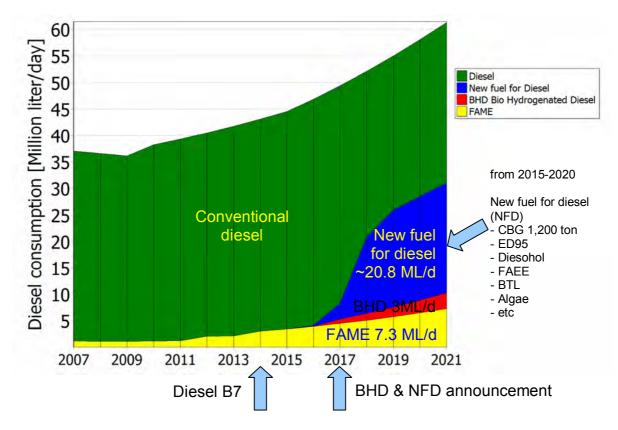


Fig. 21 AEDP targets of diesel alternatives

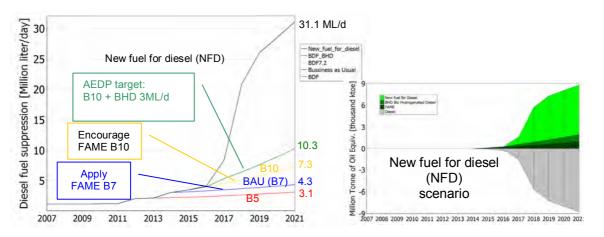


Fig. 22 Biodiesel fraction to meet AEDP target in 2021 and diesel suppression

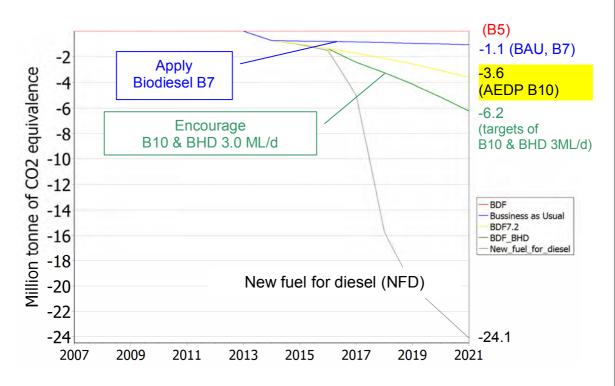


Fig. 23 Well-to-wheel GHG reduction for various biodiesel scenarios (compare to current B5). Note that BDF7.2 is a target of B10 ~ 7.2 ML/d BDF

Consider AEDP target of biodiesel consumption, the biodiesel blended fraction in diesel fuel can be calculated. Some issues regarding the conversion of blending percentage and physical amount (ML/d) arise from the heating value of non-commercial fuels such as BHD and BTL. Hence, the present model assume that BDF, BHD and BTL have similar heating value for the ease of calculation and conversion

5.4 Electric vehicle from EEDP and global green target

As shown in section 5.1, the penetration of electric vehicle (EV) technology is referred from the global trend of IEA technology perspective and Thailand EEDP for passenger car electric vehicle (PcEV) and electric motorcycle (eMC), respectively. The

requirement of additional electric demand, increasing peak daily load and the effects on reduction of fossil fuel and well-to-wheel greenhouse gas emission are shown from Fig. 24 to Fig. 27. The effects of EV technology penetration are shown for various scenarios with detailed contribution of each sub-sector (or region). The maximum potentials of EV technology are identified as the results of EEDP-IEA (extreme case).

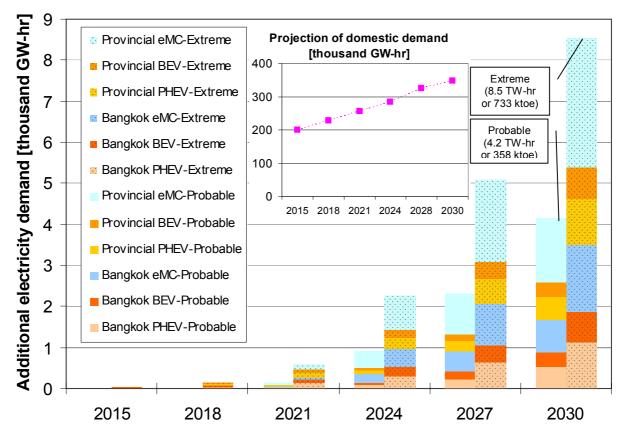


Fig. 24 Additional electricity demand for charging EV

14 Increasing of maximum daily peak load [GW] Provincial eMC-Extreme Power development plan [GW] Extreme Provincial BEV-Extreme 80 12 (13.0 GW) 70 Production capacity Provincial PHEV-Extreme 60 Probable 50 Bangkok eMC-Extreme 10 (6.4 GW) 40 Bangkok BEV-Extreme 30 Projection of maximum peak load 20 Bangkok PHEV-Extreme 8 10 Provincial eMC-Probable 0 2015 2018 2021 2024 2028 2030 Provincial BEV-Probable 6 Provincial PHEV-Probable Bangkok eMC-Probable 4 Bangkok BEV-Probable Bangkok PHEV-Probable 2 0 2015 2018 2021 2024 2027 2030

Fig. 25 Increasing of maximum daily peak load

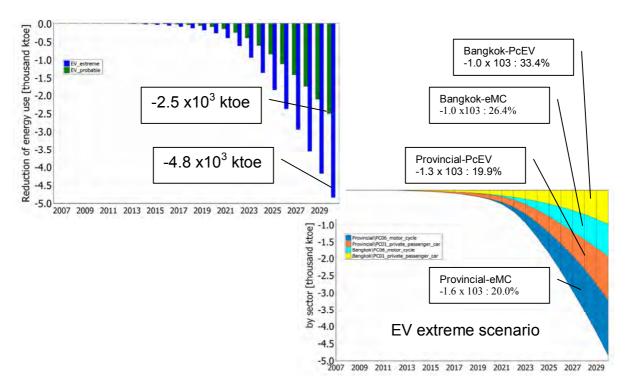


Fig. 26 Fossil fuel reduction for various scenarios and by sector

44

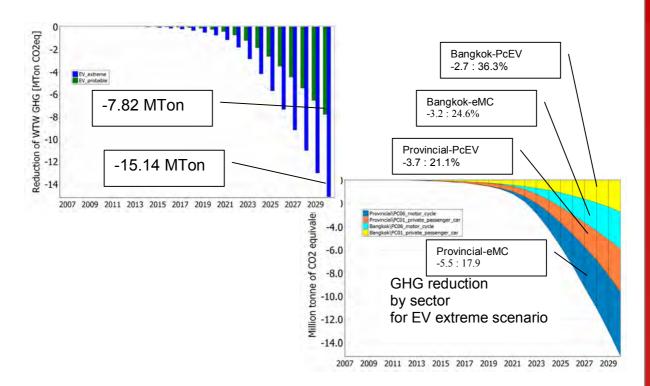


Fig. 27 Reduction of well-to-wheel GHG emissions

Since current EV technology is mostly focused on passenger vehicle, EV result is compared to gasohol scenario. The potential on reduction of gasoline fuel (shown in Fig. 18 for gasohol scenario) and WTW GHG emission (shown in Fig. 19 for gasohol scenario) are quite similar between gasohol and EV scenarios. The results show that the EV technology requires additional electricity demand (Fig. 24) by a number of electric motorcycles and higher electric consumption of PcEV. In addition, Fig. 25 shows that a large number of motorcycles have higher potentials on increasing peak electric load. Nontheless, the EV technology has the potentials on reducing overall energy consumption and WTW GHG emission up to 403 ktoe and 1.17 MTon of $CO_{2, equivalence}$, respectively in 2021, and up to 4,846 ktoe and 15.14 MTon of $CO_{2, equivalence}$, respectively in 2030.

5.5 Comparison between energy policies and a probable case of combined scenario

The maximum potentials of selected energy policies are compared in Fig. 28 and Fig. 29. According to maximum energy efficiency, the EV scenario has highest potentials on decreasing energy demand, up to 4,846 ktoe in 2030. The biodiesel has higher potential on reducing WTW GHG emission because Thai road transportation is more relied on diesel sector. The NFD scenario is account for reduction of 23.0 MTon of $CO_{2,equivalence}$ in 2030 (reference to BAU, B7).

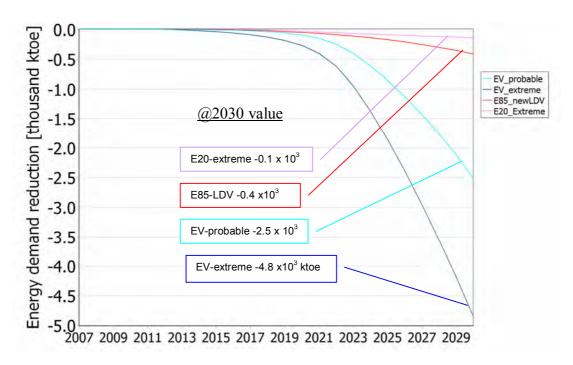


Fig. 28 Energy demand reduction (compare to BAU scenario)

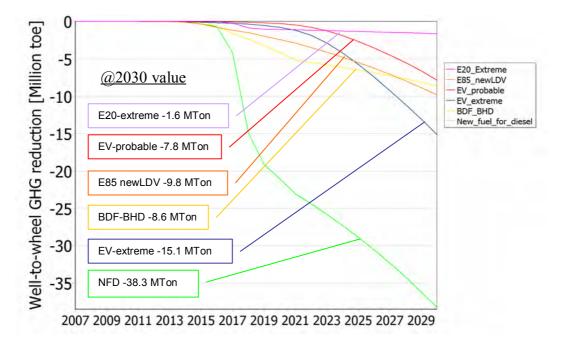


Fig. 29 Well-to-wheel GHG reduction

To realize the effects of energy policy implementation, the combination of all scenarios is constructed from the probable case in each scenario. The definition of combined scenario is shown in Table 17. The results of combination scenario are compared to other scenario in Fig. 30 and Fig. 31. The results show that the ATRANS model is capable of analyzing combined implementation of various energy policies.

Table 17: Definition of the combined probable case

		BAU	Combined scenario
Passenger car gasoline	New car	E20 (5 yr*)	E20 (5 yr)
gasonne	On road	E10 (5 yr)	E10 (5 yr) and E20 (5 yr 2015)
Motorcycle	New MC	E10 (5 yr)	E10 (5yr) and E20 (5yr 2015)
	On road	E10 (5 yr)	E10 (5yr) and E20 (5yr 2015)
Biodiesel fraction	For all diesel vehicle	B7	FAME 7.2 ML/d & BHD 3 ML/d
Electric vehicle	Passenger car	EV share for new car do not change	IEA bluemap + 5yr (2015)
	Motorcycle	Electric MC do not change	IEA bluemap

*If the begin years is not shown. It means that penetration begins at 2010.

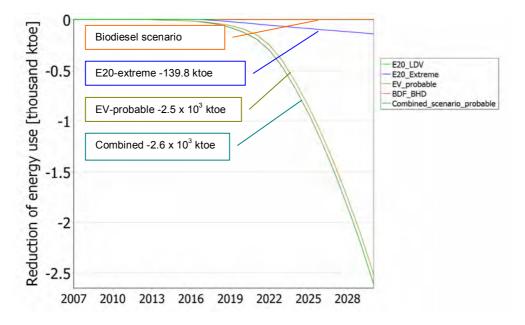


Fig. 30 Reduction of energy consumption for combined scenario and selected probable case

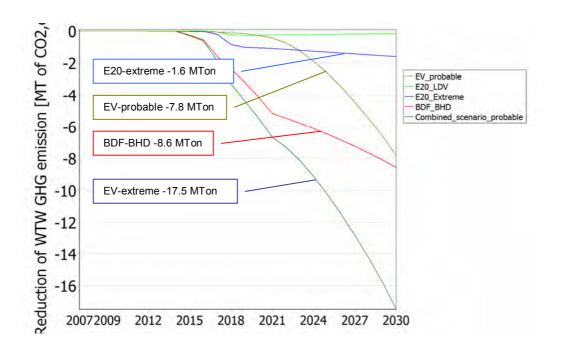


Fig. 31 Reduction of WTW GHG emission for combined scenario and selected probable case

Clearly shown as a powerful tool to analyze the impacts of road transport energy policy, the bottom-up energy demand model was improved in this work. The number of vehicle has been validated with the updated historical record at the present time (2013). The vehicle ownership model has been revised to avoid over-prediction or negative number projection. Well-to-wheel emission factor for Thai road transportation were reviewed from available academic references, and incorporated into the database of Long-range Energy Alternatives Planning (LEAP) program. Hence, the powerful bottom-up energy demand model has been updated and harmonized with Greenhouse Gas calculation for Thai road transportation.

In addition, three energy policies have been investigated as case studies, e.g. bioethanol (or gasohol), biodiesel/diesel-substitute and electric vehicle technology. The results show the difference between each implement policy, and the potentials of each policy has been quantified.

References

- 1. DEDE (2012), "Thailand Energy Statistics 2012 (Preliminary)", http://www.dede.go.th/dede/images/stories/stat_dede/statistics_2012_5mar56/thailand% 20energy%20statistics%202012%20na%205%20march%202013_1.pdf
- 2. http://apps.dlt.go.th/statistics_web/quarter/stat_q2_56.pdf
- 3. LEAP, http://www.energycommunity.org/
- 4. Pongthanaisawan, J. (2012), "Energy demand of road transport sector and fuel/vehicle technology alternatives for greenhouse gas emissions mitigation in Thailand", Ph.D. thesis, JGSEE
- 5. Santisirisomboon, J (2001), "Environmental Emission Abatement Strategies in the Energy Sector: The Integrated Economic, Environment and Energy Approach", Ph.D. thesis, SIIT
- 6. ATRANS 2009-2010 Research Project, "Possibility of Ethanol Usage as Diesel Substitutes in Thai Transportation Sector," <u>http://www.atransociety.com/2013/pdf/pdfResearch2010/ATRANS FY09 ED95 ReportDr</u> <u>Nuwong.pdf</u>
- 7. UNFCC (2005), "UNFCC Mitigation Assessments", http://unfccc.int/resource/cd roms/na1/mitigation/Module 5/Module 5 1/a Mitigation as sessment tools energy/Module5 1.ppt
- 8. Laoonual, Y., Chindaprasert, N. and Pongthanaisawan, J. (2008), "Development of Necessary Database for Planning and Assessment of Energy Conservation in Transportation Sector", Final report submitted to TRF
- 9. Schipper, L., et al. (2000) "Flexing the Link between Transport and Greenhouse Gas Emissions: A Path of the World Bank," InternationI Energy Agency, Paris
- 10. Schipper, L., et al. (2009) "Transport and Carbon Dioxide Emissions: Forecasts, Options Analysis, and Evaluation," ADB Sustainable Development Working Paper Series Asian Development Bank
- 11. Dalkmann, H. and Brannigan, C. (2007) "Transport and Climate Change," German Technical Cooperation (GTZ), Eschborn, Germany
- 12. Laoonual, Y., Chindaprasert, N., Pongthanaisawan, J. and Trinuruk, P. (2008), "Assessment of E85 Promotion Policy in Transportation Energy Sector", Final report submitted to TRF
- 13. Energy Policy and Planning Office: EPPO (1997). Investigation of Energy Conservation in Automotive; Final report to Ministry of Energy: Bangkok, Thailand.
- 14. Energy Policy and Planning Office: EPPO (2008). Survey of Energy Consumption in Transportation Sector; Final report to Ministry of Energy: Bangkok,Thailand.
- 15. Thai National Life Cycle Inventory Database (2011)
- 16. IEA Energy Technology Perspective (2006)
- 17. IPCC (2006), "2006 IPCC Guidelines for National Greenhouse Gas Inventories", http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html
- 18. Nguyen TLT, Gheewala SH, Garivait S. (2008), Applied Energy 2008;85(8):722-34.
- 19. Silalertruksa T, Gheewala SH. (2009), Energy 2009;34(11):1933-46.
- 20. Silalertruksa T, Bonnet S, Gheewala SH. (2012), Journal of Cleaner Production 2012;28(1):225-32
- 21. EPPO (2012), Thailand Power Development Plan (PDP2010rev3), 2012-2030, http://www.eppo.go.th/power/PDP2010-r3/PDP2010-Rev3-Cab19Jun2012.pdf
- 22. King Mongkut's University of Technology Thonburi (KMUTT) and National Metal and Materials Technology Center (MTEC) (2013), Assessment of Electric Vehicle Technology Development and Its Implication in Thailand. Research project funded by EGAT-NSTDA Research and Development Promotion Fund. (inThai)
- 23. King Mongkut's Institute of Technology Ladkrabang (2012), A Demonstration Test of Electric Motorcycle in Daily Mobility: A Comparison to Fossil Fuel Motorcycle. Research project funded by Energy Policy and Planning Office. (in Thai)
- 24. Environmental Protection Agency, United State of America (US-EPA) (2013), Fuel Economy Guide. U.S. Department of Energy, January 8, 2013, http://www.fueleconomy.gov/feg/download.shtml.

25. Parks, K, Denholm, P. and Markel, T., "Costs and Emissions Associated with Plug-in Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory", Technical report submitted to National Renewable Energy Laboratory (NREL), U.S. Department of Energy, Report no. NREL/TP-640-41410, May 2007.

ATRANS